Inhibition of the Na+/dicarboxylate cotransporter by anthranilic acid derivatives.
نویسندگان
چکیده
The Na(+)/dicarboxylate cotransporter NaDC1 absorbs citric acid cycle intermediates from the lumen of the small intestine and kidney proximal tubule. No effective inhibitor has been identified yet, although previous studies showed that the nonsteroidal anti-inflammatory drug, flufenamate, inhibits the human (h) NaDC1 with an IC(50) value of 2 mM. In the present study, we have tested compounds related in structure to flufenamate, all anthranilic acid derivatives, as potential inhibitors of hNaDC1. We found that N-(p-amylcinnamoyl) anthranilic acid (ACA) and 2-(p-amylcinnamoyl) amino-4-chloro benzoic acid (ONO-RS-082) are the most potent inhibitors with IC(50) values lower than 15 microM, followed by N-(9-fluorenylmethoxycarbonyl)-anthranilic acid (Fmoc-anthranilic acid) with an IC(50) value of approximately 80 microM. The effects of ACA on NaDC1 are not mediated through a change in transporter protein abundance on the plasma membrane and seem to be independent of its effect on phospholipase A(2) activity. ACA acts as a slow inhibitor of NaDC1, with slow onset and slow reversibility. Both uptake activity and efflux are inhibited by ACA. Other Na(+)/dicarboxylate transporters from the SLC13 family, including hNaDC3 and rbNaDC1, were also inhibited by ACA, ONO-RS-082, and Fmoc-anthranilic acid, whereas the Na(+)/citrate transporter (hNaCT) is much less sensitive to these compounds. The endogenous sodium-dependent succinate transport in Caco-2 cells is also inhibited by ACA. In conclusion, ACA and ONO-RS-082 represent promising lead compounds for the development of specific inhibitors of the Na(+)/dicarboxylate cotransporters.
منابع مشابه
Cloning and functional characterization of a high-affinity Na(+)/dicarboxylate cotransporter from mouse brain.
Neurons contain a high-affinity Na(+)/dicarboxylate cotransporter for absorption of neurotransmitter precursor substrates, such as alpha-ketoglutarate and malate, which are subsequently metabolized to replenish pools of neurotransmitters, including glutamate. We have isolated the cDNA coding for a high-affinity Na(+)/dicarboxylate cotransporter from mouse brain, called mNaDC-3. The mRNA coding ...
متن کاملSodium-coupled transporters for Krebs cycle intermediates.
Krebs cycle intermediates such as succinate, citrate, and alpha-ketoglutarate are transferred across plasma membranes of cells by secondary active transporters that couple the downhill movement of sodium to the concentrative uptake of substrate. Several transporters have been identified in isolated membrane vesicles and cells based on their functional properties, suggesting the existence of at ...
متن کاملOrganic anion transporter 3 (Slc22a8) is a dicarboxylate exchanger indirectly coupled to the Na+ gradient.
Basolateral uptake of organic anions in renal proximal tubule cells is indirectly coupled to the Na(+) gradient through Na(+)-dicarboxylate cotransport and organic anion/dicarboxylate exchange. One member of the organic anion transporter (OAT) family, Oat1, is expressed in the proximal tubule and is an organic anion/dicarboxylate exchanger. However, a second organic anion carrier, Oat3, is also...
متن کاملWater transport by the renal Na(+)-dicarboxylate cotransporter.
This study investigated the ability of the renal Na(+)-dicarboxylate cotransporter, NaDC-1, to transport water. Rabbit NaDC-1 was expressed in Xenopus laevis oocytes, cotransporter activity was measured as the inward current generated by substrate (citrate or succinate), and water transport was monitored by the changes in oocyte volume. In the absence of substrates, oocytes expressing NaDC-1 sh...
متن کاملRegulation of sodium-dicarboxylate cotransporter-3 from winter flounder kidney by protein kinase C.
The sodium dicarboxylate cotransporter located at the basolateral side supplies renal proximal tubule cells with Krebs cycle intermediates and maintains the driving force for the exchange of organic anions like PAH against alpha-ketoglutarate through the organic anion transporter-1. Recently, we cloned sodium dicarboxylate cotransporter-3 from winter flounder kidney (fNaDC-3). To understand the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular pharmacology
دوره 72 5 شماره
صفحات -
تاریخ انتشار 2007